机器学习:基于Sklearn、XGBoost框架,使用XGBClassifier、支持向量分类器和决策树分类器预测乳腺癌是良性还是恶性

在这里插入图片描述

前言

系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎
在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控递归单元、大型语言模型和强化学习模型

本文旨在实现一个强大的机器学习模型,该模型可以预测乳腺癌患者是良性肿瘤还是恶性肿瘤。

目录

  • 1. 相关库和数据集
    • 1.1 相关库介绍
    • 1.2 数据集介绍
    • 1.3 数据清理
  • 2. 数据探索分析(可视化)
    • 2.1 特征 features_mean
    • 2.2 特征 features_se
    • 2.3 特征 features_worst
  • 3. 数据建模(XGBClassifier、SVC、DecisionTreeClassifier)
    • 3.1 数据准备(拆分为训练集和测试集)
    • 3.2 模型建立
    • 3.3 模型评估
  • 4. 总结

1. 相关库和数据集

1.1 相关库介绍

XGBClassifier、支持向量分类器和决策树分类器用于根据给定数据集中的属性预测给定患者是患有恶性肿瘤还是良性肿瘤。

  • Pandas – 该库有助于以 2D 数组格式加载数据框,并具有多种功能,可一次性执行分析任务。
  • Numpy – Numpy 数组速度非常快,可以在很短的时间内执行大型计算。
  • Matplotlib/Seaborn – 此库用于绘制可视化效果。
  • Sklearn – 包含多个库,这些库具有预实现的功能,用于执行从数据预处理到模型开发和评估的任务。
  • XGBoost – 包含eXtreme Gradient Boosting 机器学习算法,能帮助我们实现高精度预测。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler

from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, ConfusionMatrixDisplay

import warnings
warnings.filterwarnings('ignore')

1.2 数据集介绍

我们将在此处使用的UCI机器学习存储库中的数据集,它是患有恶性和良性肿瘤的乳腺癌患者的数据集。这些列中的值是其他一些诊断的一部分,这些诊断通常用于捕获健康人与受影响的人之间的差异。现在,让我们将数据集加载到Pandas的数据框中。

data = pd.read_table('wdbc.data', sep=',', header=None, names=[
       'id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
       'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
       'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
       'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
       'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
       'fractal_dimension_se', 'radius_worst', 'texture_worst',
       'perimeter_worst', 'area_worst', 'smoothness_worst',
       'compactness_worst', 'concavity_worst', 'concave points_worst',
       'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'])
data.head()

在这里插入图片描述

由于数据集的维度比较高。让我们检查数据集的哪一列包含哪种类型的数据。

df.info()

输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
 #   Column                   Non-Null Count  Dtype  
---  ------                   --------------  -----  
 0   id                       569 non-null    int64  
 1   diagnosis                569 non-null    object 
 2   radius_mean              569 non-null    float64
 3   texture_mean             569 non-null    float64
 4   perimeter_mean           569 non-null    float64
 5   area_mean                569 non-null    float64
 6   smoothness_mean          569 non-null    float64
 7   compactness_mean         569 non-null    float64
 8   concavity_mean           569 non-null    float64
 9   concave points_mean      569 non-null    float64
 10  symmetry_mean            569 non-null    float64
 11  fractal_dimension_mean   569 non-null    float64
 12  radius_se                569 non-null    float64
 13  texture_se               569 non-null    float64
 14  perimeter_se             569 non-null    float64
 15  area_se                  569 non-null    float64
 16  smoothness_se            569 non-null    float64
 17  compactness_se           569 non-null    float64
 18  concavity_se             569 non-null    float64
 19  concave points_se        569 non-null    float64
 20  symmetry_se              569 non-null    float64
 21  fractal_dimension_se     569 non-null    float64
 22  radius_worst             569 non-null    float64
 23  texture_worst            569 non-null    float64
 24  perimeter_worst          569 non-null    float64
 25  area_worst               569 non-null    float64
 26  smoothness_worst         569 non-null    float64
 27  compactness_worst        569 non-null    float64
 28  concavity_worst          569 non-null    float64
 29  concave points_worst     569 non-null    float64
 30  symmetry_worst           569 non-null    float64
 31  fractal_dimension_worst  569 non-null    float64
 32  Unnamed: 32              0 non-null      float64
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB.4 MB

根据上述有关每列数据的信息,我们可以观察到没有空值。

data.diagnosis.unique() 

输出

array(['M', 'B'], dtype=object)

1.3 数据清理

从主要来源获得的数据被称为原始数据,需要大量的预处理,然后才能从中得出任何结论或对其进行一些建模。这些预处理步骤称为数据清理,它包括异常值删除、空值插补以及删除数据输入中的任何类型的差异。我们将删除列 ‘id’ 和 ‘Unnamed: 32’,因为它们在预测中没有作用

features = data.drop(['Unnamed: 32', 'id', 'diagnosis'], axis = 1) # diagnosis为target列 
data.diagnosis = [1 if each == "M" else 0 for each in data.diagnosis]
target = data['diagnosis']

2. 数据探索分析(可视化)

这些特征如果要探索其相关性,可以借助seaborn可视化工具进行探索。在下面的代码块中,实现了一个热力图表,可以大略看出数据之间的高度相关特征。

fig = plt.figure(figsize=(20,20), dpi=250)
sns.heatmap(features.corr(), cmap="Blues", annot=True)

输出
在这里插入图片描述

2.1 特征 features_mean

fig = plt.figure(figsize=(10,5), dpi=250)
sns.heatmap(data[features_mean].corr(), cmap=sns.cubehelix_palette(dark=.20, light=.95, as_cmap=True), annot=True)

输出

在这里插入图片描述

2.2 特征 features_se

接下来,让我们检查一下数据集features_se的相关性。

fig = plt.figure(figsize=(10,5), dpi=250)
sns.heatmap(data[features_se].corr(), cmap=sns.cubehelix_palette(dark=.20, light=.95, as_cmap=True), annot=True)

输出
在这里插入图片描述

2.3 特征 features_worst

接下来,检查一下数据集features_worst的相关性。
在这里插入图片描述

3. 数据建模(XGBClassifier、SVC、DecisionTreeClassifier)

3.1 数据准备(拆分为训练集和测试集)

X_train, X_val,\
	Y_train, Y_val = train_test_split(features, target,
									test_size=0.2,
									random_state=10)
X_train.shape, X_val.shape

输出

((455, 30), (114, 30))

3.2 模型建立

models = [XGBClassifier(), SVC(kernel='rbf'), DecisionTreeClassifier(random_state=42)]

# 循环遍历每个分类器
for i in range(len(models)):
    # 训练分类器
    models[i].fit(X_train, Y_train)
    
    # 在验证集上进行预测
    val_preds = models[i].predict(X_val)
    
    # 计算混淆矩阵
    #cm = confusion_matrix(Y_val, Y_pred)
    
    # 显示混淆矩阵
    metrics.ConfusionMatrixDisplay.from_estimator(models[i], X_val, Y_val, cmap=sns.cubehelix_palette(dark=.20, light=.95, as_cmap=True))
    
    plt.title(f'Confusion Matrix for {models[i].__class__.__name__}')
    plt.show()
    print(f'{models[i]} : ')
    print('Validation Accuracy : ', accuracy_score(Y_val, val_preds))
    print(metrics.classification_report(
    Y_val, models[i].predict(X_val)))

3.3 模型评估

让我们使用XGBClassifier、SVC、DecisionTreeClassifier为验证数据绘制混淆矩阵。
在这里插入图片描述

4. 总结

从上述准确度来看,我们可以说XGBClassifier在验证数据上的准确率表现更好,高达97%。

完整源码:机器学习:基于Sklearn、XGBoost框架,使用XGBClassifier、支持向量分类器和决策树分类器预测乳腺癌是良性还是恶性【源码】✨︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/581554.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

通过反汇编深入理解栈

若想更好地理解函数的多级调用、线程切换其本质&#xff0c;都需要对栈有更加深入的认识。 一、如何生成反汇编 在上图框中输入 fromelf --text -a -c --outputtest.dis xxx.axf // 把下图中的axf文件&#xff08;包括路径&#xff09;替换掉 "xxx.axf"然后编译即可…

弹性网络回归(概念+实例)

目录 前言 一、基本概念 1. 弹性网络回归的原理 2. 弹性网络回归的优点 3. 弹性网络回归的应用 4. 弹性网络回归的调参 二、实例 前言 弹性网络回归&#xff08;Elastic Net Regression&#xff09;是一种用于处理回归问题的机器学习算法&#xff0c;它结合了岭回归&…

Jmeter05:配置环境变量

1 Jmeter 环境 1.1 什么是环境变量&#xff1f;path什么用&#xff1f; 系统设置之一&#xff0c;通过设置PATH&#xff0c;可以让程序在DOS命令行直接启动 1.2 path怎么用 如果想让一个程序可以在DOS直接启动&#xff0c;需要将该程序目录配置进PATH 1.3 PATH和我们的关系…

基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)

效果视频链接&#xff1a;基于深度学习光伏预测系统&#xff08;五个模型&#xff09;_哔哩哔哩_bilibili 界面设计 注册界面 登录界面 主界面 展示界面 1.数据集来源 The SOLETE dataset 这里分别保存了不同间隔采样时间表格 1min是以1min 间隔采集的数据集 数据集截图&…

测算sample gpt

测算代码 import pandas as pd import matplotlib.pyplot as pltlosspd.read_pickle("loss_8.pkl") plt.plot(loss) losspd.read_pickle("loss_16.pkl") plt.plot(loss) losspd.read_pickle("loss_4_8.pkl") plt.plot(loss) losspd.read_pickle(…

因泰立科技交付宁波北收费站激光车辆检测器,实现车辆的精准分离

因泰立科技交付宁波北收费站ETC收费系统所需激光车辆检测器&#xff0c;实现车辆的精准分离&#xff0c;助力高速公路更加畅通、便捷。 此次交付的是因泰立科技的爆款产品&#xff1a;ILS-E20-3 激光车辆检测器&#xff0c;可以单侧安装&#xff0c;避免破地等大量工程安装工作…

利用Triple U.Net结构对冷冻切片HE染色组织学图像进行核实例分割

利用Triple U.Net结构对冷冻切片H&E染色组织学图像进行核实例分割 摘要IntroductionRelated WorksDatasetProposed MethodologyDataset PreparationSegmentation BranchLoss FunctionWatershed Algorithm Nuclei Instance Segmentation of Cryosectioned H&E Stained H…

【人工智能基础】逻辑回归实验分析

实验环境&#xff1a;anaconda、jutpyter Notebook 实验使用的库&#xff1a;numpy、matplotlib 一、逻辑回归 逻辑回归是一个常用于二分类的分类模型。本质是&#xff1a;假设数据服从这个分布&#xff0c;然后使用极大似然估计做参数的估计。 二、实验准备 引入库、预设值…

C++-DAY5

有以下类&#xff0c;完成特殊成员函数 #include <iostream>using namespace std; class Person {string name;int *age; public://有参构造Person(string name,int age):name(name),age(new int(age)){}//析构函数~Person(){delete age;}//拷贝构造Person(const Person …

FreeRTOS-系统时钟节拍和时间管理

一、前言 任何操作系统都需要提供一个时钟节拍&#xff0c;以供系统处理诸如延时&#xff0c;超时等与时间相关的事件。时钟节拍是特定的周期性中断&#xff0c; 这个中断可以看做是系统心跳。 中断之间的时间间隔取决于不同的应用&#xff0c;一般是 1ms – 100ms。时钟的节拍…

GQA分组注意力机制

一、目录 定义demo 二、实现 定义 grouped query attention&#xff08;GQA&#xff09; 1 GQA 原理与优点&#xff1a;将query 进行分组&#xff0c;每组query 参数共享一份key,value, 从而使key, value 矩阵变小。 2. 优点&#xff1a; 降低内存读取模型权重的时间开销&am…

无缝迁移:从阿里云WAF到AWS的成功转变之路

在当今数字化浪潮中&#xff0c;网络安全已经成为企业发展的重要组成部分。阿里云WAF&#xff08;Web 应用防火墙&#xff09;作为一种重要的网络安全解决方案&#xff0c;帮助企业保护其 Web 应用免受各种网络攻击。 然而&#xff0c;随着企业业务的扩展和需求的变化&#xf…

可替代IBM DOORS的现代化需求管理解决方案Jama Connect,支持数据迁移及重构、实时可追溯性、简化合规流程

作为一家快速发展的全球性公司&#xff0c;dSPACE一直致力于寻找保持领先和优化开发流程的方法。为推进其全球现代化计划&#xff0c;dSPACE开始寻找可以取代传统需求管理平台&#xff08;IBM DOORS&#xff09;的需求管理解决方案。 通过本次案例&#xff0c;您将了解dSPACE为…

数据结构-简单队列

1.简介 队列为一个有序列表&#xff0c;可以用数组或链表来实现。 先进先出原则。先存入队列的数据先取出&#xff0c;后存进队列的数据后取出。 这里对比一下&#xff0c;栈是后来者居上 下面使用数组来模拟队列&#xff0c;用数组的结构来存储队列的数据&#xff1a; Que…

Stable Diffusion教程:额外功能/后期处理/高清化

"额外功能"对应的英文单词是Extras&#xff0c;算是直译。但是部分版本中的翻译是“后期处理”或者“高清化”&#xff0c;这都是意译&#xff0c;因为它的主要功能是放大图片、去噪、修脸等对图片的后期处理。注意这里边对图片的处理不是 Stable Diffusion 本身的能…

微软开源了 MS-DOS 4.00

DOS的历史源远流长&#xff0c;很多现在的年轻人不知道DOS了。其实早期的windows可以看做是基于DOS的窗口界面的模拟器&#xff0c;系统的本质其实是DOS。后来DOS的漏洞还是太多了&#xff0c;微软重新写了windows的底层内核。DOS只是一个辅助终端的形式予以保留了。 微软是在…

FreeRTOS学习——FreeRTOS队列(上)

本篇文章记录我学习FreeRTOS队列的相关知识&#xff0c;主要包括队列简介、队列的结构体、队列创建等知识。 队列是为了任务与任务、任务与中断之间的通信而准备的&#xff0c;可以在任务与任务、任务与中断之间传递消息&#xff0c;队列中可以存储有限的、大小固定的数据项目。…

大白菜启动U盘想格式化但格式化不了

部分区域被修改分区表保护起来了。直接格式化的话&#xff0c;里面的文件夹都还在。根本格式化不了。特别是可用容量并未还原出来。 进入计算机管理》磁盘管理&#xff0c;看到U盘盘符。别搞错了。删除掉里面的已经分的区域和未分区区域&#xff0c;让它还原成一个整体。退出。…

分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测

分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测 目录 分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测&#xff08;Matlab实…

javaweb学习week6

javaweb学习 九.登录认证 5.登录后下发令牌 生成令牌&#xff1a;引入JWT令牌操作工具类&#xff0c;登录完成后&#xff0c;调用工具类生成JWT令牌&#xff0c;并返回 代码实例&#xff1a; 6.Filter入门 概念&#xff1a;Filter过滤器&#xff0c;是Javaweb三大组件之一…
最新文章